
Relaxed equivalence checking: a new challenge in
logic synthesis

Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: vasicek@fit.vutbr.cz

Abstract—The functional equivalence has always been the
integral part of virtually every logic synthesis tool. The formal
equivalence checking represents a key process that helps logic
synthesis tool guarantee that two representations of a circuit de-
sign exhibit exactly the same behavior. Among others, equivalence
checking is routinely applied to prove that a synthesized digital
circuit is logically equivalent to the RTL source code. Although
formal equivalence checking has matured greatly during the last
two decades and designs with millions of gates can be handled
and verified in reasonable time, a new challenge has emerged
with the recent advent of approaches addressing the problem of
synthesis of approximate circuits.

Approximate circuits are digital circuits which are intention-
ally designed in such a way that the specification is violated in
terms of functionality in order to obtain some improvements
in power consumption, performance or area, in comparison
with fully functional circuits. The main problem related to
the synthesis of approximate circuits is the checking that the
synthesized circuits meet the specification. The nature of the
approximate circuits involves to replace the strict formal equiv-
alence checking with more advanced methods that enable to
perform so called relaxed equivalence checking, i.e. checking that
two circuit designs are equal up to some bound. In addition to
that, it is crucial to perform the checking as quickly as possible
because this procedure is employed in iterative design process.
Compared to the formal equivalence checking, only little has
been done in this area and the relaxed equivalence checking still
represents an open and challenging problem.

The purpose of this paper is to survey and briefly introduce the
methods proposed to address the problem of relaxed equivalence
checking especially in the context of approximate computing
and summarize and discuss the main challenges of this research
problem in the context of logic synthesis.

I. INTRODUCTION

The logic synthesis tools originally aimed at performance
optimization and area minimization. However, the requirement
for energy-efficient circuits forced designers to update the
available design methods and include power dissipation as
the third design parameter. Recently, a new research field
was established to investigate how to make computer sys-
tems more energy efficient and faster. This field has been
coined as approximate computing. Approximate design flow
extends the established concept of logic synthesis and in-
troduces a fourth design parameter – the error. The key
motivation behind approximate computing is the inherent
error resilience of many real-world applications. The error
resilience means that we are able to accept and synthesize
circuits that produce invalid output values. The errors are

typically not recognizable in the target application because
of limited human perception capabilities or non-existence of
a golden model. Among others, multimedia applications, data
mining and data learning represent typical examples of error
resilient applications where the error can easily be traded-
off for power savings. It seems that inherent error resilience
of many real-world applications offers a huge potential for
power savings. For example, Chippa et al. reported that about
more than 83% of runtime is spent in computations that
can be approximated [1]. Another motivation for approximate
computing can be seen in the recently introduced concept of
underdesigned and opportunistic computing which attempts
to explore the possibility of constructing machines naturally
exploiting various imperfections of underlying hardware [2].

The field of approximate computing is at an early stage of
development, but there is a very active research community in-
volved in approximate computing. The current research cover
the whole computing stack, integrating thus areas of micro-
electronics, circuits, components, architectures, networks, op-
erating systems, compilers and applications. Approximations
are conducted for embedded systems, ordinary computers,
graphics processing units and even field-programmable gate
arrays. A good survey of existing techniques and results can
be found for example in [3], [4].

Let us briefly discuss the approximations conducted at the
circuit level. In hardware, typical modifications of the accurate
circuit involve the bit width reduction, intentional disconnect-
ing of subsystems, fault injection and changes in timing and
power supply voltage [1], [3]. The common feature of the first
three approaches is the usage of inexact circuits. The question
is how to design them. Changes in timing and power supply
voltage represent a generic approach that can be applied to any
digital circuit [5], [6]. In this case, the circuits are designed to
be working perfectly under a normal environment. However,
their energy consumption is reduced by voltage over-scaling,
i.e. using lower power supply voltage in which the circuit is
known to occasionally produce erroneous outputs. Conversely,
performance can be increased when the circuit is over-clocked.
In both cases, timing induced errors appear because some
paths in the circuit fail to meet the delay constraints.

Let us further focus on the design of inexact circuits in
the rest of the paper. Initially, the authors approximate the
key circuit components manually. The paper of Kulkarni et
al. [7] is often cited as one of the seminal works in this

area. Kulkarni designed an inexact 2-bit multiplier providing
a correct output for 15 out of 16 input combinations. Interest-
ingly, he removed the most significant output bit to achieve
improvement in performance and power consumption. Despite
of that, the obtained multiplier exhibits a relative low error.
The multiplication of 3× 3 is represented with 7 instead of 9.
As a consequence of that, Kulkarni reduced the area by half
compared to the exact multiplier and achieved a shorter and
faster critical path. It was also demonstrated that arbitrarily
large multipliers can be built using the approximate 2-bit
multiplier as the building block. By choosing between accurate
and inexact versions of the 2×2 block in a large multiplier, a
trade-off between error rate and power saving can be achieved.

The manual approximation have recently been replaced by
fully automated systematic methods that increase the design
productivity as well as the quality and complexity of circuits
that can be approximated. The systematic methods (such as
SALSA [8], SASIMI [9], ABACUS [10] and various search-
based approaches such as [11], [12], [13]) produce Pareto
fronts showing various compromise solutions with respect to
the optimized accurate implementation. Let us briefly mention
some of the most encouraging recent results involving the
usage of inexact circuits.

Nepal et al. investigated, for example, how to reduce power
dissipation of a block-matching circuit, an essential component
of motion estimation circuit [14]. Motion estimation and com-
pensation represent key parts of video compression algorithms
and almost all video coding standards use these operations
to exploit temporal redundancy. The authors synthesized an
approximate version of block matching circuit based on sum of
absolute difference. They reported 22% reduction in power dis-
sipation for a very small reduction in accuracy [14]. Additional
23% improvement in power savings was achieved by applying
voltage scaling, i.e. reducing supply voltage. The approximate
circuits were designed using an improved version of ABACUS
tool. ABACUS creates an abstract synthesis tree from the input
behavioral description and then applies various operators to the
AST using an iterative stochastic greedy algorithm [10].

Mrazek et al. proposed a methodology for the design of
well-optimized power-efficient neural networks (NN) with a
uniform structure suitable for hardware implementation [12].
Since NN contains hundreds of thousands multiplications,
the authors replaced the exact multipliers with approximate
multipliers to reduce power consumption. In this work, genetic
algorithm was employed to design 8-bit and 12-bit application-
specific approximate multipliers. The experiments not only
confirmed high error resiliency of NNs but also revealed
the capability of the back propagation learning algorithm to
adapt with NNs containing the approximate multipliers. The
classification accuracy remained unchanged despite the fact
that 57% improvement in power saving was achieved by
introducing 8-bit approximate multipliers into a convolutional
NN trained for the classification of street-view house numbers.

In addition to that, various key components such as small
adders, multipliers, simple FIR and IIR filters and DCT and
FFT blocks have been approximated [3], [8], [9], [10], [13].

A. Functional approximation

Albeit logic synthesis and optimization represents the re-
search area with more than fifty years of history, the conven-
tional synthesis tools have never been constructed to perform
the synthesis of approximate (i.e. erroneous) circuits. The
acceptance of partially working solutions during the design
process represent only one part of the problem. One of the
possibilities how to design energy efficient approximate cir-
cuits, for example, is to constrain the number of available gates
and let the synthesis tool produce a circuit with minimal error
with respect to the accurate circuit. This approach is referred
to as the resource-oriented design method [11]. Interestingly,
there is no conventional method that could directly solve such
an optimization problem and completely new design methods
have to be designed to support this design scenario.

Functional approximation represents one of the most pop-
ular design methods. The idea of functional approximation is
to implement a slightly different function to the original one
provided that the error is acceptable and the power consump-
tion or other system parameters are reduced adequately. A
functional approximation is typically obtained by a heuristic
procedure that modifies the original (i.e. accurate) implemen-
tation. This heuristic procedure is repeated iteratively in order
to improve the current approximate implementation in the
subsequent steps. In each iteration, it is necessary to evaluate
to what extent a given approximation satisfies functional and
non-functional requirements (area, power consumption, etc.)
of the specification. After determining the error, non-functional
properties of candidate approximations are also evaluated.

The functionality is expressed using one or several error
metrics such as error probability, average-case error, or worst-
case error. Unfortunately, the error metrics need to be tai-
lored to a particular application. When an arithmetic circuit
is approximated, for example, it is necessary to base the
error quantification on an arithmetic error metric since the
error magnitude could have a significant impact on target
application. For general logic where no additional knowledge
is available and where there does not exist a well-accepted
error model, Hamming distance or error rate is typically
employed. The approximation of general logic is sometimes
criticized as the usage of approximate logic could potentially
lead to unpredictable or even fatal behavior. However, it has
been demonstrated that the approximate circuits can reduce
overhead of dependable systems based on triple modular
redundancy [15].

Let f : Bn → Bm be a Boolean function that describes
correct functionality (specification) and f̂ : Bn → Bm

an approximation of it, both implemented by two circuits,
namely F and F̂. The following paragraphs summarize the
error metrics that have been employed in literature to quantify
the deviation between the outputs produced by a functionally
correct design and an approximate design.

1) Arithmetic error metrics: The worst-case error, some-
times denoted as error magnitude or error significance [16],

is defined as

ewst(f, f̂) = max
∀x∈Bn

|nat(f(x))− nat(f̂(x))| (1)

where nat(x) represents a function nat : Bm → Z returning a
decimal value of the m-bit binary vector x. Typically, natural
binary representation is considered, i.e. nat(x) =

∑m−1
i=0 2ixi.

The worst-case error represents the fundamental metric that is
typically used as a design constraint that helps to guarantee
that the approximate output can differ from the correct output
by at most ε (the condition ewst(f, f̂) ≤ ε is satisfied during
the whole design process).

Similarly, relative worst-case error can be employed

erel(f, f̂) = max
∀x∈Bn

|nat(f(x))− nat(f̂(x))|
nat(f(x))

(2)

to constrain the approximate circuit to differ from the correct
one by at most a certain margin. Note that a special care must
be devoted to the cases for which the output value of the
original circuit is equal to zero, i.e. nat(f(x)) = 0.

The average-case error is defined as the sum of absolute
differences in magnitude between the original and approximate
circuits, averaged over all inputs:

eavg(f, f̂) =
1

2n

∑
∀x∈Bn

|nat(f(x))− nat(f̂(x))| (3)

Instead of the absolute error values ewst and eavg depending
on the bit width of the original circuits, the corresponding
relative error values ewst% and eavg% can be utilized. In this
case, it is common to express the percentage error ratio as the
percentage of the maximum value M (0 < M ≤ 2m) that can
occur on the output of the correct circuit.

2) General error metrics: In addition to the arithmetic error
metrics, there are metrics that are not related to the magnitude
of the output of the correct or approximate circuit.

Error rate referred to as error probability represents the
basic measure that is defined as the percentage of inputs
vectors for which the output value differs from the original
one:

eprob(f, f̂) =
1

2n

∑
∀x∈Bn

[f(x) 6= f̂(x)] (4)

In many cases, it is worth to consider also the Hamming
distance between f(x) and f̂(x). The maximum Hamming
distance denoted also as bit-flip error [17] is defined as

ebf (f, f̂) = max
∀x∈Bn

(
m−1∑
i=0

fi(x)⊕ f̂i(x)

)
(5)

and gives the maximum number of output bits that simultane-
ously outputs a wrong value.

The average number of changed output bits denoted as
average Hamming distance can be expressed as follows:

ehd(f, f̂) =
1

2n

∑
∀x∈Bn

m−1∑
i=0

fi(x)⊕ f̂i(x) (6)

Note that eprob(f, f̂) = ehd(f, f̂) when applied to single-
output functions, i.e. when m = 1.

3) Problem-specific error metrics: In some cases, neither
the common metric (e.g. error rate) nor the arithmetic metric
provide satisfactory assessment of the quality of approximate
circuits. Hence, a various problem-specific error metrics have
been proposed. For example, distance error was proposed
to evaluate the quality of approximate median and sorting
circuits [18], [19]. The common problem of the previously
mentioned metrics is that they are data dependent. To model
the error introduced by the approximations, the authors pro-
posed to measure the distance between the rank of the returned
element and rank given by the specification. Two additional
metrics can be inferred from the distance error: average
distance error defined as the sum of error distances averaged
over all input combinations producing an invalid output value
and worst case distance error defined as the maximal distance
error calculated over all input combinations.

Chandrasekharan et al. [20] analyzed the behavior in
sequential circuits that contain approximated combinational
components. Although the worst-case can be computed for the
approximated component in isolation, the accumulated worst-
case in the sequential circuit may differ significantly [20]. The
sequence of successive input patterns for the approximated
component depends on the sequential logic and composition
of the overall circuit. Hence, accumulated worst-case error
and accumulated error rate have been introduced.

II. RELAXED EQUIVALENCE CHECKING

Many of the authors simplify the problem and evaluate
the functionality of approximate circuits by applying a set
of input vectors. They perform, for example, Monte Carlo
simulation to measure the error of the output vectors with
respect to an exact solution [9], [10], [21]. This approach is
viable only for small circuits having a reasonable number of
primary inputs and it could provide unsatisfactory results when
approximating complex circuits and only a negligible error is
acceptable. It is clear that when a subset of all possible input
vectors is adopted, the error is only estimated and there is no
guarantee on the error because the probability of revealing all
cases violating the predefined error level is extremely low. If
the exact error of the approximation has to be determined,
formal relaxed equivalence checking is requested, stressing
the fact that the considered systems will be checked to be
equal up to some bound with respect to a suitably chosen error
metric. This research area is rather unexplored as almost all
formal approaches have been developed for exact equivalence
checking [22].

Determining whether two Boolean functions are function-
ally equivalent represents a fundamental problem in formal
verification. Although the functional equivalence checking
is an NP-complete problem, several approaches have been
proposed so far to reduce the computational requirement for
practical circuit instances.

State-of-the-art verification tools are based on efficient
operations on Boolean formulas. Traditional manipulation
techniques are based on Binary Decision Diagrams (BDDs)

and SAT solvers. The relation between SAT and BDDs has
been studied, for example, in [23].

BDDs have been traditionally used to solve the equivalence
checking problem due to their canonical property. The decision
procedure is trivial and reduces to pointer comparison How-
ever, it is the requirement for canonicity that makes BDDs
inefficient in representing certain classes of functions. It is
well known fact that the size of BDD is sensitive to the
chosen ordering of the variables and the variable ordering
should not be chosen randomly [24]. Interestingly, there are
functions whose BDD size is always polynomial in the number
of input variables (e.g. symmetric functions). On the other
hand, there are functions for which the BDD size is always
exponential, independent of variable ordering. This holds e.g.
for the multiplication function. It has been proven that not only
multipliers but also integer division, remainder, square root and
reciprocal exhibit exponential memory requirements for any
variable ordering [25]. Even the middle bit of the n-bit mul-
tiplication cannot be efficiently represented, resulting in the
fact that the BDD-based verification of 128-bit multipliers will
never be possible [26]. In addition to that, hidden weighted
bit function representing a reversible function consisting of
a binary counter driving a multiplexer is known to have an
exponential size BDD for any variable ordering [24]. Except
of these pathological cases of circuits, BDDs are known to
be an efficient tool for representation and manipulation with
digital circuits.

In the field of digital system design, the use of SAT
solvers has been investigated for more than twenty years and
many powerful tools utilizing SAT solvers have been devel-
oped. Currently, the SAT solver based (or simply SAT-based)
equivalence checking represents a method of the first choice.
Modern SAT algorithms are extremely effective at coping
with large problem instances and large search spaces [27].
The basic principle is to translate the problem of functional
equivalence of two combinational circuits to the problem of
deciding whether a Boolean formula given in conjunctive
normal form (CNF) is satisfiable or not. This can be done
using a miter which contains the combinational circuits whose
corresponding outputs are connected via XOR gates whose
outputs are feed into a single OR gate. To prove functional
equivalence, it is necessary to prove that the output of the
miter is always false.

Most formal verification approaches that build on testing
exact equivalence are not directly extendable for relaxed equiv-
alence checking, however, the ideas behind efficient testing of
exact equivalence can serve as a basis for developing efficient
methods for checking relaxed equivalence.

A. SAT-based approaches

In order to check whether a predefined worst-case error
is violated by the candidate approximate circuit, a pseudo-
Boolean SAT solver combining a SAT solver with an ILP
solver was employed in [28], [20]. The principle of the
method is as follows. First, an auxiliary circuit referred to
as approximation miter is constructed. This circuit instantiates

the candidate approximate circuit and the accurate (reference)
circuit and compares their outputs to quantify the error for any
given input. The comparison is typically ensured by means of
an error computation block followed by a decision circuit.
Then, the approximation miter is converted to a CNF formula
and the resulting formula is used together with an objective
function as input of the SAT solver. The objective function is
constructed in such a way that it maximizes the difference at
the output. Similar approach was proposed in [29]. The authors
introduced so-called quality error circuit that ensures that the
maximum allowed error level is not exceeded. However, the
quality error circuit has to be constructed by the user similar
to a test bench, which is a design problem itself [20].

While violating the worst error can be detected, no prac-
tically useful method capable of establishing the average-
case error, error rate and total Hamming distance using a
SAT solver has been proposed up to now. Chandrasekharan
et al. [20] proposed a method for determining accumulate
average-case error and accumulate error rate for sequential
circuits using bounded model checking. In particular, they
determined what is the earliest time that a given approxi-
mate circuit exceeds an accumulated worst-case and what is
the earliest time that the circuit can reach an accumulated
error rate. Unfortunately, the initial experiments with the
accumulated average-case error did not conclude on practical
designs. The common feature of these metrics is that it is
necessary to determine the number of input assignments that
evaluates output of a miter to true. This problem generalizes
SAT problem and is known as model counting problem or
simply #SAT. The model counting represents a challenging
problem since it has been demonstrated that #SAT is extremely
hard even for some polynomial-time solvable problems [30].
As a consequence of that, the available #SAT solvers are
able to handle only small instances. In addition, the men-
tioned error metrics cannot be typically expressed in terms
of Boolean functions efficiently since it requires counting in
the solution space. Apart from the exact counting, there have
been proposed algorithms for approximate model counting.
Some authors proposed approaches that provide fast estimates
without any guarantees but they do not offer any significant
advantage compared to the Monte Carlo-based simulations.
On the other hand, there are promising methods that provide
lower or upper bounds with a correctness guarantee, often in
a probabilistic or statistical sense [30].

An efficient implementation of lexicographic SAT solver
was introduced recently [31]. The lexicographic satisfiability
(LEXSAT) is a decision problem similar to the SAT problem.
The only difference is that SAT solver typically returns any sat-
isfiable assignment, while LEXSAT returns deterministically
the one whose integer value under a given variable order is
the minimum (or maximum) among all satisfiable assignments.
According to the preliminary results, LEXSAT seems to be a
promising tool for worst-case error analysis. The benefit from
using LEXSAT compared to BDDs is that usually less than m
SAT calls are required to determine the worst-case value for an
m-bit output because the solver can learn some bits from the

received SAT assignments. In addition to that, the proposed
implementation relies on pushing an popping assumptions
which significantly improves the performance compared to the
worst-case analysis conducted using a common SAT solver
based on adding clauses. The removal of clauses is usually
hard or even impossible and it might require reinitializing the
SAT solver.

B. BDD-based approaches

The binary decision diagrams seem to be the only viable
option how to calculate the error metrics, at least for this
moment. Binary Decision Diagrams, and especially Reduced
Ordered BDDs (ROBDDs) are the most frequently used data
structure for representation and manipulation of Boolean func-
tions. On a more abstract level, ROBDDs can be considered
as a compact representation of sets or relations. One of the
main advantages of ROBDDs is the possibility to efficiently
perform many of the operations needed for the manipulation
of Boolean functions. Interestingly, the ROBDDs enable a
way how to efficiently implement operations for examining
the set of satisfying truth assignments which represents a key
feature of model counting. In fact, the number of satisfying
assignments can be determined in linear time with respect to
the number of BDD nodes using SATcount operation.

The Hamming distance computed using BDDs was intro-
duced in the context of approximate synthesis of general
logic in [32] and later in [33]. The computation of the
average-case Hamming distance is a relative straightforward
(see Equation 7). The average-case Hamming distance can
be obtained by converting the miter (without final OR gate)
to corresponding ROBDD and calling SATcount operation
for each output of the XOR gates. Finally, we sum the
obtained results and divide them by the total number of input
assignments.

ehd(f, f̂) =
1

2n

∑
∀x∈Bn

(m−1∑
i=0

fi(x)⊕ f̂i(x)
)

=
1

2n

m−1∑
i=0

(∑
∀x∈Bn

fi(x)⊕ f̂i(x)
)

=
1

2n

m−1∑
i=0

SATcount(fi ⊕ f̂i). (7)

The similar approach can be employed to determine error
rate (see Equation 8). The error rate is defined as the percent-
age of input vectors for which the approximate output differs
from the original one. It means that the output is classified
as invalid if at least one bit is different. It means that it is
sufficient to apply SATcount operation on the output of a
common miter as the miter is constructed in such a way that
it evaluates to true if and only if a certain input assignment
yields an invalid response.

eprob(f, f̂) =
1

2n

∑
∀x∈Bn

[f(x) 6= f̂(x)]

=
1

2n

∑
∀x∈Bn

(∨
0≤i<m

fi(x)⊕ f̂i(x)
)

=
1

2n
SATcount

(∨
0≤i<m

fi ⊕ f̂i
)

(8)

Recently, a new BDD-based method for arithmetic worst-
case and average-case error analysis based on characteristic
function was introduced [33]. Independently on that, an al-
ternative approach how to determine average-case arithmetic
error was developed in [34]. The main advantage of this
method is that it does not involve to construct the characteristic
function which may be time consuming. The computation of
the average-case arithmetic error using BDDs is derived in
Equation 9. To determine the average-case error we can create
an auxiliary miter consisting of the combinational circuits
whose outputs are feed into subtracter followed by a circuit
which computes absolute value. The average-case arithmetic
error can be then obtained by several calls of SATcount
operation, one per each bit of the circuit producing absolute
value. The obtained numbers are weighted by appropriate
powers of two and summed up.

eavg(f, f̂) =
1

2n

∑
∀x∈Bn

Df,f̂ (x) =
1

2n

∑
∀x∈Bn

(m−1∑
i=0

di(x) · 2i
)

=
1

2n

m−1∑
i=0

(
2i
∑
∀x∈Bn

di(x)

)

=

m−1∑
i=0

2i−n · SATcount(di), (9)

where Df,f̂ (x) = |nat(f(x))−nat(f̂(x))|, d = nat−1(Df,f̂).

In addition to that, various problem-specific error metrics
have been proposed. A BDD-based method for analysis of
approximate sorting and median circuits was proposed in [18].
To model the error introduced by the approximations more
precisely, the authors proposed to measure the distance be-
tween the rank of the returned element and rank given by
the specification. This metric was denoted distance error [19].
The problem of worst-case error analysis and error distribu-
tion analysis was formulated as Pseudo-Boolean Constraint
Satisfaction Problem (CSP) that was solved efficiently using
BDDs. The BDDs allowed to perform not only the worst-case
error analysis but they are able to compute a detailed true error
distribution even for large median and sorting circuits.

III. CONCLUSIONS

We could observe a lot of work around approximations
and formal techniques in the recent five years. Despite of
that, many challenges remain. Although the ROBDDs offer an

efficient way of representing Boolean functions and provide
a tool for solving many practical problems in digital circuit
design, it is fair to say that there are situations in which BDDs
perform unsatisfactory. For example, multipliers are known
for their exponential memory requirements for any variable
ordering. As a consequence of that, only small multipliers can
be analyzed using BDDs. Unfortunately, multiplier is one of
the key arithmetic circuit that is widely used in many appli-
cations, especially in digital signal processing and multimedia
processing. Similarly, the SAT-based equivalence checking of
multipliers is also impractical due to the large runtime require-
ments. Despite the compact CNF representation, the number
of paths traversed by the SAT solver grows exponentially with
the increasing number of inputs. Hence, there is currently a
clear need to come up with a new approach to the problem of
evaluating the quality of approximate complex digital systems.

IV. ACKNOWLEDGMENTS

This work was supported by the Czech Science Foundation
project 16-17538S (Relaxed equivalence checking for approx-
imate computing).

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in The 50th Annual Design Automation Conference 2013,
DAC’13. ACM, 2013, pp. 1–9.

[2] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar,
S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 32, no. 1, pp. 8–23, 2013.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[5] S. G. Ramasubramanian, S. Venkataramani, A. Parandhaman, and
A. Raghunathan, “Relax-and-retime: A methodology for energy-efficient
recovery based design,” in 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2013, pp. 1–6.

[6] D. May and W. Stechele, “Voltage over-scaling in sequential circuits for
approximate computing,” in 2016 International Conference on Design
and Technology of Integrated Systems in Nanoscale Era, 2016, pp. 1–6.

[7] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[8] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC ’12. ACM,
2012, pp. 796–801.

[9] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1–6.

[10] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’14. EDA Consortium, 2014, pp. 1–6.

[11] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.

[12] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of
power-efficient approximate multipliers for approximate artificial neural
networks,” in Proceedings of the 35th International Conference on
Computer-Aided Design, ser. ICCAD ’16. New York, NY, USA: ACM,
2016, pp. 81:1–81:7.

[13] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approx-
imate circuits by means of multi-objective evolutionary algorithms,” in
2016 International Conference on Design and Technology of Integrated
Systems in Nanoscale Era, 2016, pp. 1–6.

[14] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated
high-level generation of low-power approximate computing circuits,”
IEEE Transactions on Emerging Topics in Computing, vol. online first,
pp. 1–13, 2016.

[15] A. J. Sanchez-Clemente, L. Entrena, R. Hrbacek, and L. Sekanina, “Error
mitigation using approximate logic circuits: A comparison of probabilis-
tic and evolutionary approaches,” IEEE Transactions on Reliability, vol.
online first, pp. 1–13, 2016.

[16] W. T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori,
“Statistical analysis and modeling for error composition in approximate
computation circuits,” in 31st IEEE International Conference on Com-
puter Design (ICCD), 2013, pp. 47–53.

[17] T.-H. Chen, A. Alaghi, and J. P. Hayes, “Behavior of stochastic circuits
under severe error conditions,” Information Technology, vol. 56, pp. 182–
191, 2014.

[18] V. Mrazek and Z. Vasicek, “Automatic design of arbitrary-size approxi-
mate sorting networks with error guarantee,” in 2016 26th International
Workshop on Power and Timing Modeling, Optimization and Simulation.
IEEE Computer Society, 2016, pp. 221–228.

[19] Z. Vasicek and V. Mrazek, “Trading between quality and non-functional
properties of median filter in embedded systems,” Genetic Programming
and Evolvable Machines, vol. 18, no. 1, pp. 45–82, 2017.

[20] A. Chandrasekharan, M. Soeken, D. Groe, and R. Drechsler, “Precise
error determination of approximated components in sequential circuits
with model checking,” in 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[21] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A compara-
tive evaluation of approximate multipliers,” in IEEE/ACM International
Symposium on Nanoscale Architectures, NANOARCH 2016, Beijing,
China, July 18-20, 2016, 2016, pp. 191–196.

[22] L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek, and
T. Vojnar, “Towards formal relaxed equivalence checking in approximate
computing methodology,” in 2nd Workshop on Approximate Computing
(WAPCO 2016). HiPEAC, 2016, pp. 1–6.

[23] S. Reda, R. Drechsler, and A. Orailoglu, “On the relation between
SAT and BDDs for equivalence checking,” in Proceedings International
Symposium on Quality Electronic Design, 2002, pp. 394–399.

[24] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and
Implementation. Springer US, 2013.

[25] J. S. Thathachar, On the limitations of ordered representations of
functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp.
232–243.

[26] P. Woelfel, “Bounds on the obdd-size of integer multiplication via
universal hashing,” Journal of Computer and System Sciences, vol. 71,
no. 4, pp. 520 – 534, 2005.

[27] J. Marques-Silva, “Practical applications of boolean satisfiability,” in
Workshop on Discrete Event Systems (WODES’08). IEEE Press, 2008.

[28] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in
2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2011, pp. 667–673.

[29] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in Proceedings of
the Conference on Design, Automation and Test in Europe, ser. DATE
’14. EDA Consortium, 2014, pp. 1–6.

[30] C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting,” in
Handbook of Satisfiability, A. Biere, M. Heule, H. Van-Maaren, and
T. Walsh, Eds. IOS Press, 2009, ch. 20, pp. 266–290.

[31] A. Petkovska, A. Mishchenko, M. Soeken, G. De Micheli, R. Brayton,
and P. Ienne, “Fast generation of lexicographic satisfiable assignments:
Enabling canonicity in sat-based applications,” in Proceedings of the
35th International Conference on Computer-Aided Design, ser. ICCAD
’16. New York, NY, USA: ACM, 2016, pp. 4:1–4:8.

[32] Z. Vasicek and L. Sekanina, “Evolutionary design of complex ap-
proximate combinational circuits,” Genetic Programming and Evolvable
Machines, vol. 17, no. 2, pp. 169–192, 2016.

[33] M. Soeken, D. Grosse, A. Chandrasekharan, and R. Drechsler, “BDD
Minimization for Approximate Computing,” in Proceedings of the 21st
Asia and South Pacific Design Automation Conference (ASP-DAC 2016).
IEEE, 2016, pp. 474–479.

[34] Z. Vasicek, V. Mrazek, and L. Sekanina, “Towards low power approx-
imate DCT architecture for HEVC standard,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE ’17,
2017, p. to appear.

